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Abstract To every product of 2 × 2 matrices, there corresponds a one-dimensional
Schrödinger equation whose potential consists of generalised point scatterers. Products of
random matrices are obtained by making these interactions and their positions random. We
exhibit a simple one-dimensional quantum model corresponding to the most general prod-
uct of matrices in SL(2,R). We use this correspondence to find new examples of products
of random matrices for which the invariant measure can be expressed in simple analytical
terms.

Keywords Random matrices · Disordered one-dimensional quantum mechanics ·
Anderson localisation · Lyapunov exponent · Generalised point scatterers ·
Supersymmetric quantum mechanics

1 Introduction

Products of random 2 × 2 matrices arise in many physical contexts: in the study of random
spin chains, or when calculating the distribution of the natural frequencies of a classical
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random spring chain, or more generally when considering the propagation of a wave in a
one-dimensional disordered medium [6, 31, 32]. It is often the case that, in the presence
of disorder (i.e. randomness), the waves become sharply localised in space. This physical
phenomenon is known as Anderson localisation; one of its mathematical manifestations is
the exponential growth of the product of random matrices.

The rate of growth is called the Lyapunov exponent; it often has a physical interpretation
in terms of the exponential decay of the transmission probability as the size of the disordered
region grows. One method for calculating the Lyapunov exponent is based on a general
theory developed by Furstenberg and others [6, 9, 20]. This method requires the explicit
knowledge of a certain measure on the projective space, invariant under the action of the
matrices in the product. Examples of products of random matrices for which this invariant
measure can be obtained in analytical form are, however, very few; see for instance [6, 10,
27, 33] and the references therein.

The calculation of the Lyapunov exponent need not always make use of this invariant
measure. There are alternative approaches; see for instance [32, 35, 36]. Nevertheless, the
problem of determining the invariant measure is interesting in itself, and the present paper
will focus on the presentation of new explicit examples from corresponding examples of
exactly solvable models of one-dimensional disordered systems with point scatterers [2,
3, 38]. In our context, the phrase “exactly solvable” means that the calculation of the Lya-
punov exponent associated with the disordered system is reduced to a problem of quadrature.
Some of the models were solved by Nieuwenhuizen [35] (without the use of the invariant
measure); some of them are, apparently, new. Although the work reported here is, for the
most part, mathematically driven, these new models are of independent physical interest.
To the best of our knowledge, all the explicit formulae for the invariant measures consti-
tute new results. In the remainder of this introductory section, we review some relevant
concepts and some known facts, summarise our main results, and give a sketch of our ap-
proach.

1.1 Products of Random Matrices

Let

A1,A2,A3, . . .

denote independent, identically-distributed 2 × 2 matrices with unit determinant, let μ be
their common distribution, and consider the product

�n := AnAn−1 · · ·A1. (1.1)

The number

γμ := lim
n→∞

E(ln |�n|)
n

(1.2)

where | · | denotes the norm on matrices induced by the Euclidean norm on vectors, also
denoted | · |, is called the Lyapunov exponent of the product.

The product grows if the angle between the columns decreases or, equivalently, if the
columns tend to align along some common direction. In precise mathematical terms, a di-
rection in R

d is a straight line through the origin, and the set of all directions is, by definition,
the projective space P (Rd). The case d = 2 is particularly simple: any direction

{
λ

(
x

y

)
: λ ∈ R

}
,
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is characterised by the reciprocal, say

z = x

y
∈ R := R ∪ {∞},

of its slope. So we can identify P (R2) with R. The calculation of the Lyapunov exponent is
often based on the formula [6, 9, 20]:

γμ =
∫

R

ν(dz)

∫
SL(2,R)

μ(dA) ln

∣∣A(
z

1

)∣∣∣∣(z

1

)∣∣ . (1.3)

In this expression, μ is the known common distribution of the matrices An in the prod-
uct, whereas ν is the—a priori unknown—probability measure on the projective line which
is invariant under the action of matrices drawn from μ. Here, invariance means that
if

A =
(

a b

c d

)

is a μ-distributed random matrix and z is a ν-distributed random direction, then the direc-
tion

A(z) := az + b

cz + d
(1.4)

of the vector obtained after A has multiplied a vector of direction z—is also ν-distributed.
In the particular case where ν has a density, i.e.

ν(dz) = f (z)dz,

it may be shown that

f (z) =
∫

SL(2,R)

μ(dA)
(
f ◦ A−1

)
(z)

dA−1

dz
(z). (1.5)

However, there is no systematic method for solving this integral equation.

1.2 The Particular Products of Random Matrices Considered

To describe them, let us first remark that every A ∈ SL (2,R) has a unique Iwasawa decom-
position

A =
(

cos θ − sin θ

sin θ cos θ

)(
ew 0
0 e−w

)(
1 u

0 1

)
(1.6)

for some θ , u,w ∈ R. This follows easily by applying the familiar Gram–Schmidt algorithm
to the columns of A. The three parameters in this decomposition have simple geometrical
meanings: −θ is the angle that the first column of A makes with the horizontal axis, ew is
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its magnitude, and u is related to the angle between the columns; in particular, u = 0 if and
only if the columns are orthogonal.

Now, suppose that these three parameters are independent random variables. We use the
notation

v ∼ Exp(r)

to indicate that v is a random variable with an exponential distribution of parameter r , i.e.
its density is given by

re−rv1(0,∞)(v),

where for every set A ⊂ R,

1A(x) =
{

1 for x ∈ A,

0 otherwise.

Also, δx will denote the discrete probability distribution on R with all the mass at x. We
shall provide an explicit formula for the μ-invariant measure of the product �n when the
matrices are independent draws from the distribution μ of A corresponding to either

θ ∼ Exp(p), ±u ∼ Exp(q), w ∼ δ0, (1.7)

or

θ ∼ Exp(p), u ∼ δ0, ±w ∼ Exp(q). (1.8)

We shall also look at other closely related products: for instance, products involving
matrices of the form

A =
(

cosh θ sinh θ

sinh θ cosh θ

)(
ew 0
0 e−w

)(
1 u

0 1

)

and we shall exhibit invariant measures for such cases too.

1.3 The Schrödinger Equation with a Random Potential

Our approach to computing the invariant measure will not make explicit use of the integral
equation (1.5). Instead, we shall exploit the fact that these products arise when solving the
Schrödinger equation (in units such that � = 2m = 1)

−ψ ′′(x) + V (x)ψ(x) = Eψ(x) (1.9)

for a given energy E and a potential function V that vanishes everywhere except on a count-
able set of points {xj }. Physically speaking, one can think of ψ as the wave function of
a quantum particle in a crystal with impurities; the effect of the impurity located at xj is
modelled by the boundary condition

(
ψ ′(xj+)

ψ(xj+)

)
= Bj

(
ψ ′(xj−)

ψ(xj−)

)

where Bj ∈ SL(2,R). The potential V is therefore a sum of simpler potentials, one for each
pair (xj ,Bj ), known variously as point scatterers, generalised contact scatterers or pointlike
scatterers [2, 3, 11, 13, 17, 38]. The case (1.7) corresponds to the disordered version of the
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familiar Kronig–Penney model [30] considered by Frisch & Lloyd [19] and Kotani [29].
The case (1.8) corresponds to a “supersymmetric version” of the same model, in which the
Schrödinger operator factorises as

− d2

dx2
+ V (x) = − d2

dx2
+ W(x)2 − W ′(x)

=
[
− d

dx
+ W(x)

][
d

dx
+ W(x)

]
(1.10)

and the superpotential W is of the Kronig–Penney type. Such a supersymmetric Hamiltonian
is related to the square of a Dirac operator with a random mass W—a model that is of
independent interest in many contexts of condensed matter physics [7, 14, 15, 24, 41].

The strategy for calculating ν is based on the observation that it is also the stationary
distribution of a certain Markov process {z(x)}, where

z := ψ ′

ψ

is the Riccati variable associated with the Schrödinger equation. In the particular case where

xj+1 − xj ∼ Exp(p)

and the Bj are independent and identically distributed random variables in SL(2,R), one
can, following Frisch & Lloyd [19], show that the density of the stationary distribution sat-
isfies a certain integro-differential equation. The cases (1.7) and (1.8) share a special feature:
the distribution of the Bj is such that the integro-differential equation may be reduced to a
differential equation. Furthermore, this differential equation is simple enough to admit an
exact solution in terms of elementary functions.

The idea of using the Riccati variable to study disordered systems goes back to Frisch &
Lloyd [19]. The well-known “phase formalism” introduced in [4, 31] is another version of
the same idea. The trick that allows one to express the equation for the stationary distribution
of the Riccati variable in a purely differential form is borrowed from Nieuwenhuizen’s work
[35] on the particular case (1.7), in which the Dyson–Schmidt method is used to compute
the Lyapunov exponent directly from a so-called characteristic function. The same trick
has been used by others in various contexts [8, 21, 33]. The key fact is that the density of
the exponential distribution satisfies a linear differential equation with constant coefficients.
Our results on products of matrices therefore admit a number of extensions; for instance
when ±v (or ±w) has, say, a gamma or a Laplace (i.e. piecewise exponential) distribution.
One difficulty that arises with these distributions is that the differential equation for the
invariant density is then of second or higher order. This makes it harder to identify the
relevant solution; furthermore, this solution is seldom expressible in terms of elementary
functions. Without aiming at an exhaustive treatment, we shall have occasion to illustrate
some of these technical difficulties.

1.4 Outline of the Paper

The remainder of the paper is as follows: in Sect. 2, we review the concept of point scat-
terer. The Frisch–Lloyd equation for the stationary density of the Riccati variable is derived
in Sect. 3. In Sect. 4, we study particular choices of random point scatterers for which
the Frisch–Lloyd equation can be reduced to a purely differential form. We can solve this
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equation in some cases and these results are then translated in terms of invariant measures
for products of random matrices. Some possible extensions of our results are discussed
in Sect. 5. We end the paper with a few concluding remarks in Sect. 6.

2 Point Scatterers

Let u ∈ R and let δ denote the Dirac delta. The Schrödinger equation with the potential

V (x) = uδ(x)

can be expressed in the equivalent form

−ψ ′′ = Eψ, x 
= 0, (2.1)

and

ψ(0+) = ψ(0−), ψ ′(0+) = ψ ′(0−) + uψ(0−). (2.2)

This familiar “delta scatterer” is a convenient idealisation for a short-range, highly localised
potential.

A (mathematically) natural generalisation of this scatterer is obtained when the boundary
condition (2.2) is replaced by

(
ψ ′(0+)

ψ(0+)

)
= B

(
ψ ′(0−)

ψ(0−)

)
(2.3)

where B is some 2 × 2 matrix. We shall refer to B as the “boundary matrix”. In order to
ascertain what boundary matrices yield a Schrödinger operator with a self-adjoint extension,
we start with the observation that the probability current associated with the wavefunction
is proportional to

(
ψ ′(x) ψ(x)

)(
0 −1
1 0

)(
ψ ′(x)

ψ(x)

)

where the bar denotes complex conjugation. The requirement that the probability current
should be the same on both sides of the scatterer translates into the following condition on
B [11]:

B†

(
0 −1
1 0

)
B =

(
0 −1
1 0

)

where the dagger denotes hermitian transposition. Equivalently,

b11b22 − b21b12 = 1 and Im(b11b21) = Im(b22b12) = 0.

It is easily seen that this forces [2, 38]

e−iχB ∈ SL (2,R)

for some real number χ . As discussed in Appendix A, for the purposes of this paper there
is no loss of generality in setting χ = 0 and restricting our attention to the case of real
boundary matrices.
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We write

V (x) = σB(x) (2.4)

for the potential with these properties, and call it a point scatterer (at the origin) or, as it is
also known, a generalised contact scatterer or pointlike scatterer [2, 3, 17, 38]. We remark
that the Riccati variable z = ψ ′/ψ of the Schrödinger equation with this potential satisfies

z′ = − (
E + z2

)
, x 
= 0, (2.5)

and

z(0+) = B (z(0−)) (2.6)

where B is the linear fractional transformation associated with the matrix B:

B(z) = b11z + b12

b21z + b22
. (2.7)

The fact that B ∈ SL(2,R) ensures that B is invertible.
In order to gain some insight into the possible physical significance of the boundary

matrix B , we set E = k2, k > 0, and look for solutions of (2.1) and (2.3) of the form

ψ(x) =
{

ain−eikx + aout− e−ikx for x < 0,

aout+ eikx + ain+e−ikx for x > 0.
(2.8)

By definition, the scattering matrix S relates the incoming amplitudes to the outgoing am-
plitudes via (

aout−
aout+

)
= S

(
ain−
ain+

)
. (2.9)

Hence

S = 1

b21k2 + ik(b11 + b22) − b12

×
(

b21k
2 − ik(b22 − b11) + b12 2ik

2ik(b11b22 − b12b21) b21k
2 + ik(b22 − b11) + b12

)
.

The relationship between boundary and scattering matrices is discussed at greater length in
Appendix A.

Example 1 For the delta scatterer defined by (2.2),

B =
(

1 u

0 1

)
.

The wave function is continuous at the origin, but its derivative experiences a jump propor-
tional to the value of the wave function there. We have

S = 1

2ik − u

(
u 2ik

2ik u

)
and B(z) = z + u.
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The fact that

lim
u→±∞S = −I,

where I is the identity matrix, indicates that the limiting case of an infinitely large “impu-
rity strength” u corresponds to imposing a Dirichlet boundary condition at the scatterer’s
position.

Example 2 The “delta–prime” scatterer (see for instance [3, 38]) is defined by

B =
(

1 0
v 1

)

where v ∈ R. Now it is the derivative of the wave function that is continuous at the origin,
and the wave function that jumps:

ψ(0+) − ψ(0−) = vψ ′(0).

We emphasise that, in spite of its (widely used) name, the delta-prime scatterer does not
correspond to using the distributional derivative δ′ as a potential [2].

We have

S = 1

2i + vk

(
vk 2i
2i vk

)
and B(z) = z

vz + 1
.

The fact that

lim
v→±∞ S = +I

indicates that a Neumann boundary condition is obtained in the limit of infinite strength v.
The question of the possible physical significance of the delta-prime scatterer was con-

sidered by Cheon & Shigehara [12], who showed that it can in principle be “realised” by
taking an appropriate limit of three neighbouring delta scatterers.

Example 3 Let w ∈ R and

B =
(

ew 0
0 e−w

)
. (2.10)

In this case, the scatterer produces a discontinuity in both the wave function and its deriv-
ative. As pointed out in [13], the Schrödinger equation (2.1) can be recast as the first-order
system

−ψ ′ − Wψ = kφ,

φ′ − Wφ = kψ

with

W(x) = wδ(x).

The meaning of these equations becomes clear if we introduce an integrating factor:

− d

dx

[
exp

(∫ x

−∞
W(y)dy

)
ψ

]
= k exp

(∫ x

−∞
W(y)dy

)
φ,

d

dx

[
exp

(
−

∫ x

−∞
W(y)dy

)
φ

]
= k exp

(
−

∫ x

−∞
W(y)dy

)
ψ.
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We call this scatterer the supersymmetric scatterer. We have

S =
(

tanhw sechw

sechw − tanhw

)
and B(z) = e2wz.

Hence the scattering is independent of the wave number k—a property consistent with the
observation, made in Albeverio et al. [2], that diagonal matrices (are the only matrices in
SL(2,R) that) yield boundary conditions invariant under the scaling

ψ(x) �→ √
λψ(λx), λ > 0.

However, in contrast with the previous examples, the scattering is asymmetric, i.e. not in-
variant under the transformation x �→ −x. The limit of infinite strength w has a clear inter-
pretation: it corresponds to a Neumann boundary condition on the left of the barrier, and to
a Dirichlet condition on the right.

Example 4 Let

B =
(

ew 0
0 e−w

)(
1 u

0 1

)
.

This point scatterer can be thought of as two neighbouring scatterers—a supersymmetric
scatterer of strength w on the right, and a delta scatterer of strength u on the left—in the
limit as the distance ε separating them tends to 0; see Fig. 1. For want of a better name, we
shall refer to it as the double impurity.

We have

S = 1

2ik coshw − uew

(
2ik sinhw + uew 2ik

2ik −2ik sinhw + uew

)

and

B(z) = e2w(z + u).

This particular scatterer is interesting for the following reason: the Iwasawa decomposi-
tion (1.6) implies that any point scatterer for a real boundary matrix can be thought of as
a double impurity “up to a rotation”. For example, the boundary matrix for the delta-prime
scatterer may be decomposed as

(
1 0

v 1

)
=

(
cos θ − sin θ

sin θ cos θ

)(
ew 0

0 e−w

)(
1 u

0 1

)

Fig. 1 The double impurity: the
empty dot corresponds to the
location of a supersymmetric
scatterer of strength w while the
black dot corresponds to the
location of a delta scatterer of
strength u
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with

θ = arctanv, w = 1

2
ln(1 + v2) and u = v

1 + v2
.

We shall return to this point in the next section.

3 A Generalised Kronig–Penney Model with Disorder

In this section, we elaborate the correspondence between disordered systems with point
scatterers and products of random matrices. Then, for a particular type of disorder, we show
how, following Frisch & Lloyd [19], one can derive a useful equation for the stationary
density of the Riccati variable associated with the system.

3.1 The Generalised Kronig–Penney Model

Given a sequence

{Bj } ⊂ SL(2,R)

and an increasing sequence {xj } of non-negative numbers, we call (1.9) with the potential

V (x) =
∞∑

j=1

σBj
(x − xj ) (3.1)

a generalised Kronig–Penney model. The notation σB(x) was defined in (2.4).
Let us consider first the case where the energy is positive, i.e. E = k2, k > 0. In principle,

one could dispense with the parameter k and set it to unity by rescaling x but, as we shall see
later in Sect. 3.5, there is some advantage in making the dependence on the energy explicit.
For xj < x < xj+1, the solution is given by

(
ψ ′(x)

ψ(x)

)
=

(√
k 0

0 1√
k

)(
cos(k[x − xj ]) − sin(k[x − xj ])
sin(k[x − xj ]) cos(k[x − xj ])

)

×
(

1√
k

0

0
√

k

)
Bj

(
ψ ′(xj−)

ψ(xj−)

)
.

By recurrence, we obtain the solution for every x > 0 in terms of a product of matrices. In
particular, (

ψ ′(xn+1−)

ψ(xn+1−)

)
= AnAn−1 · · ·A1

(
ψ ′(x1−)

ψ(x1−)

)
(3.2)

where

Aj =
(√

k 0
0 1√

k

)(
cos(kθj ) − sin(kθj )

sin(kθj ) cos(kθj )

)(
1√
k

0

0
√

k

)
Bj (3.3)

and

θj := xj+1 − xj .
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Thus, for instance, we see that a product of matrices of the form (1.6) corresponds to a
generalised Kronig–Penney model of unit energy in which the σBj

are double impurities. It is
worth emphasising this point: between impurities, the Schrödinger operator itself produces
the “rotation part” of the matrices in the product. Therefore, in order to associate a quantum
model to the most general product of matrices, it is sufficient to use a potential made up of
(suitably spaced) double impurities.

The case of negative energy, i.e. E = −k2, k > 0, is also of mathematical interest. Then
(3.2) holds with

Aj =
(√

k 0
0 1√

k

)(
cosh(kθj ) sinh(kθj )

sinh(kθj ) cosh(kθj )

)(
1√
k

0

0
√

k

)
Bj . (3.4)

3.2 The Generalised Frisch–Lloyd Equation

It is physically reasonable to assume that the scatterers are randomly, independently and uni-
formly distributed. We denote by p the mean density of impurities. If we label the scatterers
in order of increasing position along the positive semi-axis, so that xj denotes the position
of the j th impurity, then

0 < x1 < x2 < x3 < · · ·
and the spacings between consecutive scatterers are independent and have the same expo-
nential distribution, i.e.

θj ∼ Exp(p), p > 0. (3.5)

For this distribution of the θj ,

n(x) := #{xj : xj < x}

is the familiar Poisson process.
We shall be interested in the statistical behaviour of the Riccati variable

z(x) = ψ ′(x)

ψ(x)
. (3.6)

Its evolution is governed by

z′ = −(z2 + E), x /∈ {xj }, (3.7)

and

z(xj+) = Bj (z(xj−)), j ∈ N. (3.8)

The “lack of memory” property of the exponential distribution (3.5) implies that the process
{z(x)} thus defined is Markov.

It should be clear from Sect. 1.1 and the previous subsection that, if we set k = 1, then the
invariant measure ν associated with the product (3.2) is precisely the stationary distribution
of the Riccati variable. So we shall look for particular cases where this stationary distribution
may be obtained in analytical form.

To simplify matters, we also suppose in the first instance that the Bj are all the same,
deterministic, and we drop the subscript.
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Let f (z;x) be the density of the distribution of the Riccati variable. Let h > 0 and let dz

denote an interval of infinitesimal length dz centred on the number z. Then

f (z;x + h)dz = P(z(x + h) ∈ dz)

=
∞∑


=0

P(z(x + h) ∈ dz|n(x + h) − n(x) = 
)P(n(x + h) − n(x) = 
).

It is well-known (see [18]) that, with an error of order o(h) as h → 0+,

P (n(x + h) − n(x) = 
) =

⎧⎪⎨
⎪⎩

1 − ph if 
 = 0

ph if 
 = 1

0 if 
 > 1

and so

f (z;x + h)dz

= P(z(x + h) ∈ dz|n(x + h) − n(x) = 0)(1 − ph)

+ P(z(x + h) ∈ dz|n(x + h) − n(x) = 1)ph + dz o(h) as h → 0+. (3.9)

The condition n(x + h) − n(x) = 0 means that no xj lies in (x, x + h), and so implies
that the Riccati variable is governed solely by the differential equation (3.7) in this interval.
Therefore, the first conditional probability on the right-hand side of (3.9) equals

f
(
z + [z2 + E]h;x)

[1 + 2zh + o(h)] dz as h → 0+.

The condition n(x +h)−n(x) = 1 means that exactly one of the xj lies in (x, x +h), and so
the Riccati variable experiences a jump defined by (3.8) in this interval. A simple calculation
then yields, for the second conditional probability on the right-hand side of (3.9),

P(z(x + h) ∈ dz|n(x + h) − n(x) = 1) = P(B(z(xj−)) ∈ dz) + dzO(h)

= f (B−1(z);x)
dB−1

dz
(z)dz[1 + O(h)]

as h → 0+.

After reporting these results in (3.9) and taking the limit as h → 0+, we obtain a generali-
sation of (6.69) in [31], Sect. 6.7:

∂f

∂x
(z;x) = ∂

∂z

[
(z2 + E)f (z;x)

] + p

[
f

(
B−1(z);x) dB−1

dz
(z) − f (z;x)

]
.

The stationary distribution, denoted again f = f (z), therefore satisfies

d

dz

[
(z2 + E)f (z)

] + p

[
f

(
B−1(z)

) dB−1

dz
(z) − f (z)

]
= 0.
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More generally, if we permit the Bj to be independent random variables with a common
distribution denoted κ , then it is straightforward to derive the equation

d

dz

[
(z2 + E)f (z)

] + p

∫
SL(2,R)

κ(dB)

[
f

(
B−1(z)

) dB−1

dz
(z) − f (z)

]
= 0. (3.10)

By integrating with respect to z, we obtain

(z2 + E)f (z) + p

∫
SL(2,R)

κ(dB)

∫ B−1(z)

z

dtf (t) = N. (3.11)

The constant of integration N in this equation depends on E; as will be explained shortly,
it represents the integrated density of states per unit length of the Schrödinger Hamiltonian
for the potential (3.1) [19, 29, 31].

We shall refer to (3.10), or to its integrated version (3.11), as the (generalised) Frisch–
Lloyd equation. In the following sections, we shall consider again the particular point scat-
terers described in Sect. 2, and exhibit choices of the measure κ for which this equation can
be converted to a differential equation.

3.3 The Qualitative Behaviour of the Riccati Variable

It is instructive to think of the Riccati equation (3.7) in the absence of scatterers as an au-
tonomous system describing the motion of a fictitious “particle” constrained to roll along
the “potential” curve

U(z) = Ez + z3

3

in such a way that its “velocity” at “time” x and “position” z is given by the slope −U ′(z);
see Fig. 2. We may regard the occurrence of the jumps in (3.8) as a perturbation of this
autonomous system, and the intensity p of the Poisson process as the perturbation parameter.

Let us consider first the unperturbed system (i.e. p = 0). For E > 0, the system has
no equilibrium point: the particle rolls down to −∞, and re-appears immediately at +∞,
reflecting the fact that the solution ψ of the corresponding Schrödinger equation has a zero
at the “time” x when the particle escapes to infinity. This behaviour of the Riccati variable
indicates that every E > 0 belongs to the spectrum of the Schrödinger operator.

Fig. 2 The “potential” U(z)

associated with the unperturbed
Riccati equation
z′ = −U ′(z) = −(z2 + E)
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Equation (3.7) gives the “velocity” of the fictitious particle as a function of its position.
Hence the “time” taken to go from +∞ to −∞ is

−
∫ −∞

+∞

dz

z2 + k2
= π

k
.

On the other hand, the solution of the Frisch-Lloyd equation for E > 0 and p = 0 is the
Cauchy density

f (z) = N

z2 + k2
with N = k

π
. (3.12)

Therefore the normalisation constant N may be interpreted as the reciprocal of the “time”
that the particle takes to run through R. Another equivalent interpretation is as follows: recall
that, when the particle escapes to −∞, it is immediately re-injected at +∞ to commence
a new journey through R. N may therefore also be viewed as the current of the fictitious
particle [31], and the Rice formula

lim
z→±∞ z2f (z) = N

can be understood as expressing a relation between the stationary distribution and a current
of probability. This current equals the number of infinitudes of z(x)—i.e. the number of
nodes of the wavefunction ψ(x)—per unit length. By the familiar oscillation theorem of
Sturm–Liouville theory, it is therefore the same as the integrated density of states per unit
length of the corresponding Schrödinger Hamiltonian.

By contrast, in the case E = −k2 < 0, k > 0, the unperturbed system has an unstable
equilibrium point at −k, and a stable equilibrium point at k. Unless the particle starts from
a position on the left of the unstable equilibrium, it must tend asymptotically to the stable
equilibrium point. The fact that the particle cannot reach infinity more than once indicates
that the spectrum lies entirely in R+. The solution of the Frisch–Lloyd equation is

f (z) = δ(z − k).

Let us now consider how the occurrence of jumps can affect the system. For E > 0, the
jumps defined by (3.8), as long as they are finite and infrequent (i.e. p is small), cannot
prevent the particle from visiting −∞ repeatedly; the system should therefore behave in
much the same way as in the unperturbed case, and we expect the density f to be Cauchy-
like. In particular, the interpretation of the normalisation constant in terms of a probability
current remains valid because, for z large enough, the deterministic part (3.7) of the evo-
lution of the Riccati variable dominates the stochastic part (3.8). The situation for E < 0
is more complicated. Roughly speaking, positive jumps, i.e. discontinuous increases of z,
enable the particle to make excursions to the right of the stable equilibrium point z = k,
but the particle can never overcome the infinite barrier and so it rolls back down towards k.
On the other hand, negative jumps, i.e. discontinuous decreases of z, enable the particle to
make excursions to the left of k. If the jump is large enough, the particle can overcome the
potential barrier at −k and escape to −∞, raising the possibility that part of the spectrum
of the Schrödinger operator lies in R−. For small p, we expect the density f to be large in
the neighbourhood of z = k.

We shall return to this useful particle analogy in later sections when we examine the
detailed behaviour of the Riccati variable for specific random point scatterers.
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3.4 The Reduced Lyapunov Exponent

Knowing the density of the invariant measure, the calculation of the Lyapunov exponent
reduces, thanks to formula (1.3), to the evaluation of a multiple integral. We will show in
this subsection that, if A is of the form (3.3) and the boundary matrix B is triangular,
then this formula may be greatly simplified. As pointed out in Sect. 3.1, there is no loss of
generality in setting E = k2 = 1 since the parameter k may be re-introduced subsequently
by rescaling. This has the advantage of making the calculation simpler.

For definiteness, let us begin with the upper triangular case, i.e. b21 = 0. Then the density
of the invariant measure satisfies the Frisch–Lloyd equation (3.10), again with E = 1, and
we have

∣∣∣∣A
(

z

1

)∣∣∣∣
2

=
∣∣∣∣B

(
z

1

)∣∣∣∣
2

= (b11z + b12)
2 + (b21z + b22)

2

= (b21z + b22)
2
[
1 + B(z)2

] = b2
22

[
1 + B(z)2

]
.

Hence

γμ = 1

2

∫
R

dz

∫
SL(2,R)

κ(dB) ln

∣∣A(
z

1

)∣∣2

∣∣(z

1

)∣∣2 f (z)

= 1

2

∫
R

dz

∫
SL(2,R)

κ(dB) ln
b2

22[1 + B(z)2]
1 + z2

f (z)

and, after some re-arrangement,

γμ = E (ln|b22|) + 1

2

∫
R

dz

∫
SL(2,R)

κ(dB) ln
[
1 + B(z)2

]
f (z)

− 1

2

∫
R

dz

∫
SL(2,R)

κ(dB) ln(1 + z2)f (z). (3.13)

Consider the second term on the right-hand side of the last equality: by changing the order
of integration, and making the substitution y = B(z) in the inner integral, we obtain

1

2

∫
R

dz

∫
SL(2,R)

κ(dB) ln
[
1 + B(z)2

]
f (z)

= 1

2

∫
SL(2,R)

κ(dB)

∫
R

dz ln
[
1 + B(z)2

]
f (z)

= 1

2

∫
SL(2,R)

κ(dB)

∫
R

dy ln
[
1 + y2

]
f

(
B−1(y)

) dB−1

dy
(y).

Next, we use the letter z instead of y, and change the order of integration again: (3.13)
becomes

γμ = E (ln|b22|) + 1

2

∫
R

dz

∫
SL(2,R)

κ(dB)

[
f

(
B−1(z)

) dB−1

dz
(z) − f (z)

]
ln(1 + z2).
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Finally, by making use of (3.10), and then integrating by parts, we arrive at the following
formula:

γμ = 1

p
γ (3.14)

where

γ := pE (ln|b22|) + −
∫ ∞

−∞
dz zf (z), b21 = 0. (3.15)

This formula remains unchanged after restoring k by rescaling. A similar calculation may
be carried out if, instead, B is lower triangular. Equation (3.14) then holds with

γ := pE (ln|b11|) − −
∫ ∞

−∞
dz

E

z
f (z), b12 = 0. (3.16)

The integrals in these expressions are Cauchy principal value integrals.
We shall henceforth refer to γ as the reduced Lyapunov exponent. Although our deriva-

tion of the relation between γμ and γ assumed that E > 0, we conjecture, on the basis of
the numerical evidence obtained in all the examples we considered, that it holds also when
E < 0.

Such simplified formulae for the Lyapunov exponent are well-known in the physics lit-
erature [31]. The reduced Lyapunov exponent is the rate of growth of the solution of the
Schrödinger equation:

γ = lim
x→∞

1

x
ln

√
ψ(x)2 + [

ψ ′(x)
]2

.

Alternatively, using the stationarity of the process {z(x)},

γ = lim
x→∞

1

x
ln|ψ(x)| + lim

x→∞
1

x
ln

√
1 + z2(x) = lim

x→∞
1

x
ln|ψ(x)|

and

γ = lim
x→∞

1

x
ln

∣∣ψ ′(x)
∣∣ + lim

x→∞
1

x
ln

√
1/z2(x) + 1 = lim

x→∞
1

x
ln|ψ ′(x)|.

γ also provides a reasonable definition of (the reciprocal of) the localisation length of the
system.

The presence of the expectation term on the right-hand side of (3.15) may, at first sight,
surprise readers familiar with the case of delta scatterers, but its occurrence in our more
general context is easily explained as follows: between consecutive scatterers, the wave
function is continuous and so, for xn < x < xn+1, we can write

ln|ψ(x)| = ln|ψ(xn+)| +
∫ x

xn

dy
d

dy
ln|ψ(y)|

= ln|ψ(xn+)| +
∫ x

xn

dy z(y). (3.17)

Let us denote by b
(n)
ij the entry of Bn in the ith row and j th column. If B is upper triangular,

we have, at xn,

ψ(xn+) = b
(n)

22 ψ(xn−)
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and so the wavefunction is discontinuous there unless b
(n)

22 = 1. Reporting this in (3.17) and
iterating, we obtain

ln|ψ(x)| = ln|ψ(0)| +
n(x)∑
j=1

ln
∣∣b(j)

22

∣∣ +
∫ x

0
dy z(y)

where n(x), as defined in Sect. 3.2, is the number of point scatterers in the interval [0, x].
Using

E(n(x)) = px

and the ergodicity of the Riccati variable, we recover by this other route (3.15) obtained
earlier. It is now clear that the expectation term arises from the possible discontinuities of
the wave function at the scatterers. To give two examples: for the delta scatterer, the wave
function is continuous everywhere, b22 = 1 and so (3.15) is just the familiar formula in [31].
For the supersymmetric scatterer, however, the wavefunction has discontinuities,

b22 = e−w

and so, as noted in [41], the formula for the reduced Lyapunov exponent must include the
additional term

E (ln|b22|) = −E(w).

If B is lower triangular instead, it is more natural to work with ψ ′: for xn < x < xn+1, we
have

ln|ψ ′(x)| = ln|ψ ′(xn+)| +
∫ x

xn

dy
d

dy
ln|ψ ′(y)|

= ln|ψ ′(xn+)| +
∫ x

xn

ψ ′′(y)

ψ ′(y)
dy = ln|ψ ′(xn+)| − k2

∫ x

xn

ψ(y)

ψ ′(y)
dy

= ln|ψ ′(xn+)| − k2
∫ x

xn

dy
1

z(y)
.

Using the lower triangularity of Bn, we obtain, at xn,

ψ ′(xn+) = b
(n)

11 ψ ′(xn−).

By repeating our earlier argument, we recover (3.16).

3.5 Halperin’s Trick and the Energy Parameter

For the particular case of delta scatterers, Halperin [25] devised an ingenious method that, at
least in some cases, by-passes the need for quadrature and yields analytical expressions for
the reduced Lyapunov exponent. Let us give a brief outline of Halperin’s trick and discuss
some of its consequences.

Halperin works with the Fourier transform of the invariant density:

F(x) :=
∫

R

f (z)e−ixz dz. (3.18)
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For the delta scatterer, the Frisch–Lloyd equation (3.11) in Fourier space is then

F ′′(x) − EF(x) − p
E(e−ixu) − 1

ix
F(x) = −2πNδ(x). (3.19)

Let ε > 0 and integrate over the interval (−ε, ε). Using the fact that

F ′(−ε) = −F ′(ε)

and letting ε → 0+, we obtain

N = − 1

π
Re

[
F ′(0+)

]
.

Furthermore, since in this case b11 = 1 and b21 = 0, (3.15) leads to

γ = −
∫ ∞

−∞
zf (z)dz = −Im

[
F ′(0+)

]
.

These two formulae may be combined neatly by introducing the so-called characteristic
function � associated with the system [32, 34]:

�(E) := γ (E) − iπN(E). (3.20)

Then Halperin observes that

�(E) = i
F ′(0+)

F (0+)
(3.21)

where, with a slight abuse of notation, F is now the particular solution of the homogeneous
version of (3.19) satisfying the condition

lim
x→+∞F(x) = 0.

Thus the problem of evaluating γ and N has been reduced to that of finding the recessive
solution of a linear homogeneous differential equation.

Equation (3.21) expresses a relationship between the density of states and the Lyapunov
exponent—a relationship made more explicit in the Herbert–Jones–Thouless formula [26,
42] well-known in the theory of quantum disordered systems. A further consequence of
the same equation is that, if the recessive solution F depends analytically on the energy
parameter, so does the characteristic function. � should thus have an analytic continua-
tion everywhere in the complex plane, save on the cut where the essential spectrum of the
Schrödinger Hamiltonian lies.

More generally, for an arbitrary scatterer, the Fourier transform F of the invariant density
satisfies the equation

F ′′(x) − EF(x) − p

∫
SL(2,R)

κ(dB)

∫
R

dz
e−ixB(z) − e−ixz

ix
f (z) = 0. (3.22)

We shall not make explicit use of this equation in what follows: instead, we shall obtain
closed formulae for the characteristic function by making use of analytic continuation. This
is one important benefit of having retained the energy parameter.
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3.6 Random Continued Fractions

There is a close correspondence between products of 2×2 matrices and continued fractions.
Let z0 be an arbitrary starting value, recall the definition (1.4) and set

zn := An−1 ◦ · · · ◦ A0(z0). (3.23)

Then the sequence {zn}n∈N is a Markov chain on the projective line, and ν is μ-invariant if
and only if it is a stationary distribution of this Markov chain. Now, reverse the order of the
matrices in the product, set ζ0 = z0 and

ζn := A0 ◦ · · · ◦ An−1(ζ0). (3.24)

Although, for every n, zn and ζn have the same distribution, the large-n behaviour of a
typical realisation of the sequence {zn}n∈N differs greatly from that of a typical realisation
of the sequence {ζn}n∈N [20].

{ζn}n∈N converges to a (random) limit, say ζ . Write

An :=
(

an bn

cn dn

)
.

Then

An(ζ ) = an/cn − 1/c2
n

dn/cn + ζ
(3.25)

and so

ζ := a0/c0 − 1/c2
0

d0/c0 + a1/c1 − 1/c2
1

d1/c1+a2/c2− 1/c2
2

d2/c2+···

. (3.26)

It is immediately clear that, if A is μ-distributed, then

A(ζ ) = a/c − 1/c2

d/c + ζ

has the same distribution as ζ . Hence the distribution of ζ is μ-invariant. Furthermore, if
ζ is independent of z0, then there can be only one μ-invariant measure. So f is also the
density of the infinite random continued fraction ζ .

By contrast, {zn}n∈N behaves ergodically. Therefore the density f of the invariant mea-
sure ν should be well approximated by a histogram of the zn. We have used this to verify
the correctness of our results.

4 Some Explicit Invariant Measures

4.1 Delta Scatterers

In this section, we obtain invariant measures for products where the matrices are of the form

A =
(√

k 0
0 1√

k

)(
cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)(
1√
k

0

0
√

k

)(
1 u

0 1

)
(4.1)
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or

A =
(√

k 0
0 1√

k

)(
cosh(kθ) sinh(kθ)

sinh(kθ) cosh(kθ)

)(
1√
k

0

0
√

k

)(
1 u

0 1

)
(4.2)

where θ ∼ Exp(p) and u is a random variable, independent of θ , whose density we denote
by � : R → R+. These products are associated with the generalised Kronig–Penney model
for E = k2 > 0 and E = −k2 respectively, in the case where (see Example 1)

B =
(

1 u

0 1

)
.

The corresponding Frisch–Lloyd equation (3.11) is

(z2 + E)f (z) + p

∫
R

du

∫ z−u

z

dt f (t)�(u) = N.

We change the order of integration; the equation becomes

N = (z2 + E)f (z) + p

∫
R

dt K(z − t)f (t) (4.3)

where

K(x) =
⎧⎨
⎩

− ∫ ∞
x

�(u)du if x > 0,

∫ x

−∞ �(u)du if x < 0.
(4.4)

Suppose that

±u ∼ Exp(q). (4.5)

We shall show that, in this case, the Frisch–Lloyd equation reduces to a first-order differen-
tial equation. For the sake of clarity, consider first the case u ∼ Exp(q). For this choice of
distribution,

K(x) =
{

−e−qx if x > 0,

0 if x < 0.

So we have

K ′(x) = −qK(x), K(0+) = −1,

and (4.3) is

N = (z2 + E)f (z) + p

∫ z

−∞
dt K(z − t)f (t).

Differentiate this equation with respect to z:

0 = d

dz

[
(z2 + E)f (z)

] + pK(0+)f (z) + p

∫ z

−∞
dt K ′(z − t)f (t)

= d

dz

[
(z2 + E)f (z)

] − pf (z) − qp

∫ z

−∞
dt K(z − t)f (t)
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= d

dz

[
(z2 + E)f (z)

] − pf (z) − q
[
N − (z2 + E)f (z)

]
.

This is the required differential equation. The case −u ∼ Exp(q) is analogous, and so we
find, for the general case (4.5),

d

dz

[
(z2 + E)f (z)

] − pf (z) ± q
[
(z2 + E)f (z)

] = ±qN. (4.6)

We seek the particular solution that satisfies the normalisation condition
∫

R

f (z)dz = 1. (4.7)

This condition fixes the constant of integration N , and hence provides an expression for the
integrated density of states for the Schrödinger Hamiltonian.

4.1.1 Product of the form (4.1)

For E = k2 > 0, this leads to

f (z) = ±qN

z2 + k2
exp

[
∓qz + p

k
arctan

z

k

]

×
∫ z

∓∞
exp

[
±qt − p

k
arctan

t

k

]
dt. (4.8)

The density of the Riccati variable is plotted in Fig. 3 for (a) positive un and (b) neg-
ative un. The continuous black curves correspond to a low density of scatterers (small p,
compared to k and 1/q) and are reminiscent of the Cauchy law obtained in the absence of
scatterers. Recall that the effect of the nth scatterer on the Riccati variable is described by
the equation

z(xn+) = z(xn−) + un.

When the un are positive, any increase in the concentration of the scatterers produces a
decrease in the current and so the distribution is pushed to the right; see the blue dashed curve
in Fig. 3 (a). On the other hand, when the un are negative, any increase in the concentration
of the scatterers leads to an increase in the current of the Riccati variable and so spreads the
distribution; see the blue dashed curve in Fig. 3 (b).

4.1.2 Product of the form (4.2)

For E = −k2 < 0 and u ∼ Exp(q), one must take N = 0 to obtain a normalisable solution—
a reflection of the fact that the essential spectrum of the Schrödinger Hamiltonian is R+.
Then

f (z) = C−1 e−qz

z2 − k2

(
z − k

z + k

) p
2k

1(k,∞)(z) (4.9)

where C is the normalisation constant.
By contrast, in the case −u ∼ Exp(q), one finds

f (z) = qN

z2 − k2
eqz

∣∣∣∣z − k

z + k

∣∣∣∣
p
2k

∫ c(z)

z

e−qt

∣∣∣∣ t + k

t − k

∣∣∣∣
p
2k

dt (4.10)
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Fig. 3 Plots of the invariant density f for delta scatterers and positive energy E = k2 = +1. Black continu-
ous lines correspond to a low density of scatterers, i.e. θ ∼ Exp(p) with p = 1/4, and blue dashed lines to a
high density, i.e. p = 4. (a) u ∼ Exp(1); (b) −u ∼ Exp(1)

Fig. 4 Plots of the invariant density f for delta scatterers and negative energy E = −k2 = −1. Black contin-
uous lines correspond to a “low” density of scatterers, i.e. θ ∼ Exp(p) with p = 1/4, and blue dashed lines
to a “high” density p = 4. (a) u ∼ Exp(1); (b) −u ∼ Exp(1)

where

c(z) =
{

∞ if z > k,

−k if z < k.

The invariant density f is plotted in Fig. 4 for the cases (a) u ∼ Exp(q) and (b)
−u ∼ Exp(q) respectively. The shape of the distribution can again be explained by us-
ing the qualitative picture of Sect. 3.3. For positive un, the sharp peak obtained for a small
concentration p of scatterers (black continuous line) reflects the trapping of the process
{z(x)} by the potential well at z = k; recall Fig. 2. When the concentration of scatterers is
increased, the Riccati variable experiences positive jumps more frequently and so the distri-
bution spreads to the right (blue dashed curve). For negative un, the jumps can take arbitrary
negative values. This enables the “particle” to overcome the barrier at z = −k, and so we
have a non-zero current N (i.e. a non-zero density of states). This effect is enhanced as the
density of the scatterers is increased (blue dashed curve).
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4.1.3 Calculation of the Characteristic Function

Using the invariant measure, it is trivial to express the integrated density of states and the
Lyapunov exponent in integral form. Such integral expressions are particularly useful when
studying the asymptotics of N and γ in various limits. Even so, it is worth seeking analytical
expressions (in terms of special functions) for these quantities, as they sometimes reveal
unexpected connections to other problems.

Recalling the discussion in Sect. 3.5, we begin with a straightforward application of
Halperin’s trick. For ±u ∼ Exp(q), we have

E
(
e−iux

) = 1

1 ± ix/q

and so the homogeneous version of (3.19) is

F ′′(x) +
[
−E + p

±q + ix

]
F(x) = 0.

The recessive solution is

F(x) =
W −p

2
√−E

, 1
2
(2

√−E[ix ± q])
W −p

2
√−E

, 1
2
(±2

√−Eq)

where Wa,b is the Whittaker function [1, 23]. We deduce that, for E outside the essential
spectrum of the Schrödinger Hamiltonian,

�(E) := γ (E) − iπN(E) = −2
√−E

W ′ −p

2
√−E

, 1
2
(±2

√−Eq)

W −p

2
√−E

, 1
2
(±2

√−Eq)
. (4.11)

This formula for the characteristic function was discovered by Nieuwenhuizen [35]. In par-
ticular, for k real,

γ (k2) − iπN(k2) = �(k2 + i0+) = 2ik
W ′

−ip
2k

, 1
2
(∓2ikq)

W−ip
2k

, 1
2
(∓2ikq)

and

γ (−k2) − iπN(−k2) = �(−k2 + i0+) = −2k

W ′−p
2k

, 1
2
(±2kq)

W−p
2k

, 1
2
(±2kq)

.

In the case u ∼ Exp(q) there is an alternative derivation of this formula which does not
require the solution of a differential equation: start with the explicit form of the invariant
density f for E = −k2 < 0, given by (4.9). By using Formula 3 in [23], §3.384, we obtain
the following expression for the normalisation constant:

C :=
∫ ∞

k

e−qz

z2 − k2

(
z − k

z + k

) p
2k

dz = 1

2k
�

(
p

2k

)
W−p

2k
, 1

2
(2kq).
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The reduced Lyapunov exponent γ may then be obtained easily by noticing that differentia-
tion with respect to the parameter q yields an additional factor of z in the integrand. Hence,
for k real, we find

γ (−k2) =
∫ ∞

k

dz zf (z) = − ∂

∂q
lnC = −2k

W ′−p
2k

, 1
2
(2kq)

W−p
2k

, 1
2
(2kq)

.

Since N = 0 for E < 0, this yields

�(−k2) = −2k

W ′−p
2k

, 1
2
(2kq)

W−p
2k

, 1
2
(2kq)

. (4.12)

Now, the half-line E < 0 lies outside the essential spectrum of the Schrödinger Hamiltonian
because N = 0 along it. Hence � is analytic along this half-line, and we see that the “+ case”
of our earlier equation (4.11) is simply the analytic continuation of (4.12). In particular, the
formula in the case E = k2 > 0 may be deduced from the formula in the case E = −k2 < 0
by applying the simple substitution

k �→ −ik.

4.2 Delta–prime Scatterers

Products of matrices of the form

A =
(√

k 0
0 1√

k

)(
cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)(
1√
k

0

0
√

k

)(
1 0
v 1

)
(4.13)

or

A =
(√

k 0
0 1√

k

)(
cosh(kθ) sinh(kθ)

sinh(kθ) cosh(kθ)

)(
1√
k

0

0
√

k

)(
1 0
v 1

)
(4.14)

where θ ∼ Exp(p) and v is a random variable independent of θ , are associated with the
delta-prime scatterer (see Example 2)

B =
(

1 0
v 1

)
.

The Frisch–Lloyd equation (3.11) for this scatterer is

(z2 + E)f (z) + p

∫
R

dv

∫ z
1−vz

z

dt f (t)�(v) = N (4.15)

where � is the density of v. The calculation of the invariant measure in this case can be
reduced to the calculation of the invariant measure for some Kronig–Penney model with
delta scatterers. For instance, in the negative energy case (4.14) with k = 1, we have

(
0 1
1 0

)
A

(
0 1
1 0

)
=

(
cosh θ sinh θ

sinh θ cosh θ

)(
1 v

0 1

)
.
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The similarity transformation of the matrix A on the left corresponds to the transformation
z �→ 1/z of the Riccati variable. So the invariant densities for the delta and the delta-prime
cases are in a reciprocal relationship. Accordingly, replace z by 1/z in (4.15) and set

g(z) = 1

z2
f (1/z).

Then

N = (
1 + Ez2

)
g(z) − p

∫
R

dv

∫ z−v

z

dt g(t)�(v)

= (
1 + Ez2

)
g(z) − p

∫
R

dt K(z − t)g(t) (4.16)

where K is the kernel defined by (4.4). This equation for g is essentially the same as (4.3)
save for the sign of p and the dependence on the energy. For the case

±v ∼ Exp(q)

this equation can, by using the same tricks as before, be converted into a differential equation
which is easy to solve.

4.2.1 Product of the form (4.13)

For E = k2 > 0, the upshot is

f (z) = ±qN

z2 + k2
exp

[
∓q

z
− p

k
arctan

k

z

]

×
∫ 1/z

∓∞
exp

[
±qt + p

k
arctan(kt)

]
dt. (4.17)

Plots of the distribution are shown in Fig. 5 for (a) positive vn and (b) negative vn. These
plots differ somewhat from those obtained in the case of delta scatterers, and we can use the

Fig. 5 Plots of the invariant density f for delta-prime scatterers and positive energy E = k2 = +1. Black
continuous lines correspond to a “low” density of scatterers, i.e. θ ∼ Exp(p) with p = 1/4, and blue dashed
lines to a “high” density p = 4. (a) v ∼ Exp(1). (b) −v ∼ Exp(1)
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particle analogy of Sect. 3.3 to explain the differences. The jump of the particle associated
with the nth delta-prime scatterer is given implicitly by

1

z(xn+)
= 1

z(xn−)
+ vn. (4.18)

The strongly asymmetric distribution obtained for negative vn (part (b) of Fig. 5) can be
explained as follows: starting from +∞, the particle experiences its first jump at “time” x1,
and its value after the jump is approximately 1/v1 < 0. In fact, for z negative and small in
modulus, the invariant density resembles very closely that of 1/v1, i.e.

f (z) ∼ c

z2
eq/z as z → 0−.

Thereafter, the particle proceeds towards −∞. In particular, if p is large, then the expected
value of x1 is small, and the particle spends hardly any time on the positive semi-axis.

4.2.2 Product of the form (4.14)

For E = −k2 < 0 and v ∼ Exp(q), we find

f (z) = C−1 e−q/z

k2 − z2

(
k − z

k + z

) p
2k

1(0,k)(z) (4.19)

where

C = 1

2k
�

(
p

2k

)
W− p

2k
, 1

2
(2q/k). (4.20)

When E = −k2 < 0 and −v ∼ Exp(q), we obtain

f (z) = qN

z2 − k2
eq/z

∣∣∣∣z − k

z + k

∣∣∣∣
p
2k

∫ 1/z

c(z)

e−qt

∣∣∣∣1 + kt

1 − kt

∣∣∣∣
p
2k

dt (4.21)

where

c(z) =
{

∞ if 0 < z < 1/k,

−k otherwise.

Again, we can try to understand the qualitative features of the density function f for
E < 0 by invoking the particle analogy of Sect. 3.3. In view of (4.18), when vn ∼ Exp(q)

and z(xn−) > 0, the value of the Riccati variable decreases but can never become negative.
So the particle, once it passes to the left of the equilibrium point at z = k, must remain
trapped there. This explains why the density is supported on (0, k); see Fig. 6(a). By contrast,
when −vn ∼ Exp(q), the jumps are unrestricted; the “particle” can escape over the potential
barrier at z = −k infinitely often, leading to a non-zero current and a density f spread
over R. This is shown in Fig. 6(b).

4.2.3 Calculation of the Characteristic Function

We begin with the case v ∼ Exp(q) and E = −k2 < 0.
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Fig. 6 Plots of the invariant density f for delta-prime scatterers and negative energy E = −k2 = −1. Black
continuous lines correspond to a “low” density of scatterers, i.e. θ ∼ Exp(p) with p = 1/4, and blue dashed
lines to a “high” density p = 4. (a) v ∼ Exp(1). (b) −v ∼ Exp(1)

The invariant density is then given by (4.19). Using formula (3.16) for the reduced Lya-
punov exponent and the expression (4.20) for the normalisation constant C, we find

γ (−k2) = −k2 ∂

∂q
lnC = −2k

W ′−p
2k

, 1
2
(2q/k)

W−p
2k

, 1
2
(2q/k)

.

Since N(−k2) = 0 in this case, analytic continuation yields

�(E) = −2
√−E

W ′ −p

2
√−E

, 1
2
(2q/

√−E)

W −p

2
√−E

, 1
2
(2q/

√−E)
. (4.22)

The characteristic function in the case −v ∼ Exp(q) is the same, except that q becomes
−q . In particular, for E = k2 > 0 and ±v ∼ Exp(q), we obtain

γ (k2) − iπN(k2) = �(k2 + i0+) = 2ik
W ′

−ip
2k

, 1
2
(±2iq/k)

W−ip
2k

, 1
2
(±2iq/k)

.

An alternative derivation of these results could use the correspondence between the delta
and delta-prime cases alluded to earlier.

4.3 Supersymmetric Scatterers

We now consider products where the matrices are of the form

A =
(√

k 0
0 1√

k

)(
cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)(
1√
k

0

0
√

k

)(
ew 0
0 e−w

)
(4.23)

or

A =
(√

k 0
0 1√

k

)(
cosh(kθ) sinh(kθ)

sinh(kθ) cosh(kθ)

)(
1√
k

0

0
√

k

)(
ew 0
0 e−w

)
(4.24)
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where θ ∼ Exp(p) and w is a random variable independent of θ . These products arise in
the solution of the generalised Kronig–Penney model with the supersymmetric interaction
of Example 3, i.e.

B =
(

ew 0
0 e−w

)
.

Let � denote the density of w. The Frisch–Lloyd equation (3.11) is

(z2 + E)f (z) + p

∫
R

dw

∫ ze−2w

z

dt f (t)�(w) = N.

After changing the order of integration, this becomes

N = (z2 + E)f (z) + p

∫ ∞

0
K

(
1

2
ln

z

t

)
f (t)dt (4.25)

where K is the kernel defined by (4.4).
Let

±w ∼ Exp(q).

Then the kernel is supported on R± and satisfies the differential equation

K ′(x) = ∓qK(x), K(0±) = ∓1.

We deduce

d

dz

[
(z2 + E)f (z)

] − pf (z) ± q
z2 + E

2z
f (z) = ± q

2z
N (4.26)

where N is the integrated density of states.
Before going on to solve this equation, let us make a general remark: in the supersym-

metric case, if one knows the invariant density, say f+, for a certain distribution of the
strength w, then one can easily deduce the invariant density, say f−, when the sign of the
strength is reversed. For instance, in the case E = 1, the relationship between f− and f+ is
simply

f−(z) = 1

z2
f+

(
−1

z

)
.

This relationship can be deduced directly from the form of the matrices in the product (4.23).
It is also connected with the fact that changing the sign of the superpotential W in Exam-
ple 3 corresponds to swapping the functions φ and ψ—a manifestation of the so-called
supersymmetry of the Hamiltonian.

4.3.1 Product of the form (4.23)

For E = k2 > 0 and ±w ∼ Exp(q), we have

f (z) = N
∓ q

2 |z|∓ q
2

z2 + k2
exp

[
p

k
arctan

z

k

]

×
∫ c±(z)

z

|t |± q
2 exp

[
−p

k
arctan

t

k

]
dt

t
(4.27)
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Fig. 7 Plots of the invariant density f for supersymmetric scatterers and positive energy E = k2 = +1.
Black continuous lines correspond to a “low” density of scatterers, i.e. θ ∼ Exp(p) with p = 1/2, and blue
dashed lines to a “high” density p = 2. (a) w ∼ Exp(1). (b) −w ∼ Exp(1)

where

c+(z) = 0 and c−(z) =
{

∞ if z > 0,

−∞ if z < 0.

For the supersymmetric scatterer,

B(z) = e2wz. (4.28)

Hence, for w ∼ Exp(q), the jumps increase the Riccati variable if it is already positive,
and decrease it otherwise. Furthermore there is no bound on the magnitude of the jumps. It
follows that the effect of increasing the density p of the scatterers is to decrease the density
f on R−, and to increase it on R+. This is in agreement with the plots shown in Fig. 7(a).

For −w ∼ Exp(q), we observe the opposite effect: as shown in Fig. 7(b), for increas-
ing p, the density f is lowered on R+ and raised on R−. The asymmetry of the plots for a
negative strength w is readily explained by using the particle analogy: starting at +∞, the
particle rolls down the potential, spurred along by the impurities, and quickly reaches the
origin. Once the particle crosses over to the left, the impurities work against the downward
force and tend to push the particle back towards the origin.

4.3.2 Product of the form (4.24)

For E = −k2 < 0 and w ∼ Exp(q), we must take N = 0 in (4.26) to obtain a normalisable
solution. This is consistent with the well-known fact that the spectrum of a supersymmetric
Schrödinger Hamiltonian must be contained in R+. Hence

f (z) = C−1
+

z− q
2

z2 − k2

(
z − k

z + k

) p
2k

1(k,∞)(z). (4.29)

For −w ∼ Exp(q), the solution is, instead,

f (z) = C−1
−

z
q
2

k2 − z2

(
k − z

k + z

) p
2k

1(0,k)(z). (4.30)
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Fig. 8 Plots of the invariant density f for supersymmetric scatterers and negative energy E = −k2 = −1.
Black continuous lines correspond to a “low” density of scatterers, i.e. θ ∼ Exp(p) with p = 1/4, and blue
dashed lines to a “high” density p = 4. (a) w ∼ Exp(1). (b) −w ∼ Exp(1)

By Formula 8 in [23], §3.197,

C± = k∓ q
2 −1 B

(
q

2
+ 1,

p

2k

)
2F1

(
p

2k
+ 1,

q

2
+ 1; p

2k
+ q

2
+ 1;−1

)
(4.31)

where B is the beta function and 2F1 is Gauss’s hypergeometric function.
Plots of the invariant density are shown in Fig. 8. As before, the particle analogy helps to

explain their qualitative features: in view of (4.28), when w ∼ Exp(q), the “particle” must
eventually end up to the right of the equilibrium point z = k; see Fig. 8(b). By contrast,
when −w ∈ Exp(q) and z > 0, the Riccati variable remains positive but its value decreases
at every jump. Hence, in this case, the support of the invariant density is (0, k); see Fig. 8(b).

4.3.3 Calculation of the Characteristic Function

The essential spectrum—and hence also the characteristic function—is invariant under a
change of sign of the strength w. So we need only consider the case w ∼ Exp(q). For
E = −k2, we find, by using (4.29),

−
∫ ∞

−∞
dz zf (z) = C−1

+

∫ ∞

k

dz
z− q

2 +1

z2 − k2

(
z − k

z + k

) p
2k

.

The normalisation constant C+ is given explicitly by formula (4.31), and a similar formula
is available for the definite integral; it suffices to replace q/2 by q/2 − 1. Using (3.15) and
the fact that N(−k2) = 0, the result is

�(−k2) = −p

q
+ k

B
(

p

2k
,

q

2

)
2F1

(
p

2k
+ 1,

q

2 ; p

2k
+ q

2 ;−1
)

B
(

p

2k
,

q

2 + 1
)

2F1

(
p

2k
+ 1,

q

2 + 1; p

2k
+ q

2 + 1;−1
) .

This formula extends to other values of the energy by analytic continuation; it suffices to
replace k by

√−E. In particular, for E = k2 > 0, the characteristic function is obtained by
replacing k by −ik. The density of states and the Lyapunov exponent may then be deduced
from the formulae (see (3.20))

N = − 1

π
Im� and γ = Re�.
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5 Extensions

In this final section, we consider possible extensions of our results: (1) to another scatterer;
(2) to another distribution of the strength of the scatterers and (3) to another distribution of
the spacing between consecutive scatterers.

5.1 Double Impurities

The decomposition formula (1.6) gives a formal correspondence between products of 2 × 2
matrices and generalised Kronig–Penney models of unit energy where the point scatterers
are double impurities. In the particular case

θ ∼ Exp(p),

the density of the invariant measure solves the Frisch–Lloyd equation

N = (z2 + 1)f (z) + p

∫
R

∫
R

dudw �(u,w)

∫ ze−2w−u

z

f (y)dy. (5.1)

We have already considered the cases where w vanishes almost surely (the delta scatterer)
or u vanishes almost surely (the supersymmetric scatterer). The purpose of this subsection
is to consider the truly multivariate case where u and w are independent and

u ∼ Exp(qd), w ∼ Exp(qs).

We shall show that the corresponding invariant density f solves the differential equation

d

dz
[2z(ϕ′ − pf )] + (qs + 2qdz)(ϕ

′ − pf ) + qdqsϕ = qdqsN (5.2)

where

ϕ := (z2 + 1)f (z)

and N is independent of z. To derive this equation from (5.1), we shall consider the cases
z ≤ 0 and z > 0 separately.

Consider the latter case; we write

�(u,w) = �d(u)�s(w).

By changing the order of integration, we find

∫ ∞

0
dw �s(w)

∫ ze−2w−u

z

f (y)dy

= −
∫ z

z−u

f (y)dy +
∫ z−u

−u

Ks

(
1

2
ln

z

y + u

)
f (y)dy,

where

Ks(x) :=
{

−e−qsx if x ≥ 0,

0 if x < 0.
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So (5.1) becomes

N = ϕ(z) − p

∫ ∞

0
du�d(u)

∫ z

z−u

f (y)dy

+ p

∫ ∞

0
du�d(u)

∫ z−u

−u

Ks

(
1

2
ln

z

y + u

)
f (y)dy,

and, by using integration by parts for the first integral on the right-hand side, we find

N = ϕ(z) − p

∫ ∞

0
e−qduf (z − u)du

+ p

∫ ∞

0
du�d(u)

∫ z−u

−u

Ks

(
1

2
ln

z

y + u

)
f (y)dy. (5.3)

Next, differentiate this equation with respect to z. By exploiting the identities

K ′
s = −qsKs, Ks(0+) = 1

and

d

du
e−qdu = −qde−qdu,

we deduce

2z
[
ϕ′(z) − pf (z)

] + qs [ϕ(z) − N ] = qsp

∫ ∞

0
e−qduf (z − u)du. (5.4)

The integral term may be eliminated by differentiating once more with respect to z, and we
obtain eventually (5.2).

The same equation is obtained if, instead, z < 0. It is a trivial exercise to adapt these
arguments to cater for cases where one or both of u and w is always negative. We do not
know how to express the solution of this second-order linear differential equation in terms
of known functions, except in the limiting cases

qd fixed, qs → ∞,

and

qd → ∞, qs fixed,

that have already been considered in Sect. 4.1 and Sect. 4.3 respectively.

5.2 Delta Scatterers with a Gamma Distribution

Equation (4.3) with the kernel (4.4) can be reduced to a purely differential form whenever
� solves a linear differential equation with piecewise constant coefficients. For instance,
suppose that

±u ∼ Gamma(2,1/q),

i.e.

�(u) = ±q2ue∓qu1R±(u).
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Then (
d

du
± q

)2

� = 0.

Using the same trick as before, we obtain the following differential equation for ϕ := (z2 +
E)f : (

d

dz
± q

)2

ϕ − p

(
d

dz
± 2q

)
ϕ

z2 + E
= q2N. (5.5)

Suppose that E = k2 > 0 and use the ansatz

ϕ(z) := exp

[
∓qz + p

k
arctan

z

k

]
h(z).

Then

(z2 + k2)h′′ + ph′ ∓ pqh = 0. (5.6)

This equation may be solved in terms of hypergeometric series and, by imposing suitable
auxiliary conditions, we can find a particular solution h that is positive. The method of
variation of constants then yields

f (z) = q2N

z2 + k2
exp

[
∓qz + p

k
arctan

z

k

]
h(z)

×
∫ z

∓∞
exp

[
±qt − p

k
arctan

t

k

]
H(t)dt, (5.7)

where

H(z) := e∓qz

h2(z)

∫ z

∓∞
e±qth(t)dt.

We now return to the calculation of the function h(z) appearing in this formula. The
general solution of (5.6) takes a remarkably simple form when

pq = j (j − 1), j ∈ N.

Indeed, substitute

h(z) :=
∞∑
i=0

ai

i! z
i, a0 = 1, (5.8)

into (5.6). This yields a recurrence relation for the ai :

k2ai+2 = −pai+1 + [
pq − i(i − 1)

]
ai−1 = 0, i = 0,1, . . . .

By choosing a1 so that aj+1 = 0, the infinite series reduces to a polynomial, say Pj :

P2(z) = 1 + 2
pz

p2 + 2k2
+ 2

z2

p2 + 2k2
,

P3(z) = 1 + 6
(p2 + 4k2)z

p(p2 + 10k2)
+ 18

z2

p2 + 10k2
+ 24

z3

p(p2 + 10k2)
,
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P4(z) = 1 + 12
p(p2 + 16k2)z

p4 + 28p2k2 + 72k4
+ 72

(p2 + 6k2)z2

p4 + 28p2k2 + 72k4

+ 240
pz3

p4 + 28p2k2 + 72k4
+ 360

z4

p4 + 28p2k2 + 72k4
.

Another solution may be found by setting

h(z) := (z2 + k2) exp

[
−p

k
arctan

z

k

] ∞∑
i=0

bi

i! z
i, b0 = 1.

Then

k2bi+2 = pbi+1 + [pq − (i + 2)(i + 1)]bi = 0, i = 0,1, . . . .

By choosing b1 so that bj−1 = 0, this series reduces to another polynomial, say Qj :

Q2(z) = 1,

Q3(z) = 1 − 4

p
z,

Q4(z) = 1 − 10
pz

6k2 + p2
+ 30

z2

6k2 + p2
.

Hence the general solution of (5.6) is

h(z) = c1Pj (z) + c2Qj(z)(z
2 + k2) exp

[
−p

k
arctan

z

k

]
. (5.9)

Even with such detailed knowledge, it is not straightforward to identify the particular
solution h that yields the density. We end with the remark that the characteristic function
may, nevertheless, be constructed by using Halperin’s trick: in this case, the homogeneous
version of (3.19) is

F ′′(x) +
{
−E ± p/q

(1 ± ix/q)2
[2 ± ix/q]

}
F(x) = 0.

The solutions are expressible in terms of Whittaker functions; in particular, for k real,

�(k2) = γ (k2) − iπN(k2) = 2ik
W ′

−i p
2k

,

√
1±4pq

2

(∓2ikq)

W−i p
2k

,

√
1±4pq

2
(∓2ikq)

.

This result was originally found by Nieuwenhuizen [35].

5.3 An Alternative Derivation of the Frisch–Lloyd Equation

In deriving (3.11), we made explicit use of the fact that, when the spacing θj := xj+1 − xj

is exponentially distributed,

n(x) := #{xj : xj < x}
is a Poisson process. In this subsection, we outline an alternative derivation of the Frisch–
Lloyd equation which generalises to other distributions of the θj .
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There is no real loss of generality in setting E = 1. We use the decomposition

A =
(

cos θ − sin θ

sin θ cos θ

)
B.

Then

A−1 = B−1 ◦ R−θ

where

Rθ (z) := z cos θ − sin θ

z sin θ + cos θ
.

Denote by � the density of the random variable θ and by κ the distribution of B . Equation
(1.5) for the invariant density f then becomes

f (z) =
∫

R

dθ �(θ)

∫
SL(2,R)

κ(dB)
[
f ◦ B−1 ◦ R−θ

]
(z)

d

dz

[
B−1 ◦ R−θ

]
(z)

=
∫

R

dθ�(θ)

∫
SL(2,R)

κ(dB)
[
f ◦ B−1

]
(w)

dB−1

dz
(w)

∂w

∂z

where

w := R−θ (z) = z cos θ + sin θ

−z sin θ + cos θ
.

The same equation can also be written in the more compact form

f (z) =
∫

R

dθ �(θ)
∂

∂z

∫
SL(2,R)

κ(dB)

∫ B−1(w)

0
dt f (t). (5.10)

Now,

∂w

∂θ
= (1 + z2)

∂w

∂z
.

Hence, if we multiply (5.10) by 1 + z2, we obtain

(1 + z2)f (z) =
∫

R

dθ �(θ)
∂

∂θ

∫
SL(2,R)

κ(dB)

∫ B−1(w)

0
dt f (t).

Next, differentiate with respect to z:

d

dz

[
(1 + z2)f (z)

] =
∫

R

dθ �(θ)
∂2

∂z∂θ

∫
SL(2,R)

κ(dB)

∫ B−1(w)

0
dt f (t)

=
∫

R

dθ �(θ)
∂2

∂θ∂z

∫
SL(2,R)

κ(dB)

∫ B−1(w)

0
dt f (t).

We may then use integration by parts for the outer integral; in the particular case

�(θ) = pe−pθ1[0,∞)

the Frisch–Lloyd equation (3.11) follows easily after invoking (5.10) once more.
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We can use the same trick whenever the density of θ satisfies a linear differential equation
with constant coefficients. For instance, in the case

θ ∼ Gamma(2,p)

it may be shown that

d

dz

[
(1 + z2)ϕ′(z)

] − 2pϕ′(z) + p2f (z) = p2
∫

SL(2,R)

κ(dB)
[
f ◦ B−1

]
(z)

dB−1

dz
(z)

where

ϕ(z) = (1 + z2)f (z).

6 Conclusion

In this article we have studied the invariant measure of products of random matrices in
SL (2,R). This study relied on the correspondence between such products and a certain class
of random Schrödinger equations in which the potential consists of point scatterers. We have
considered several instances of this correspondence: delta, delta-prime and supersymmetric
scatterers. By generalising the approach developed by Frisch & Lloyd for delta scatterers,
we have obtained an integral equation for the invariant density of a Riccati variable; this
density yields the invariant measure of the product of random matrices. For the three cases
of point scatterers we have obtained explicit formulae for the invariant measures. These are
the main new results of this paper.

The integrated density of states and the Lyapunov exponent of these models were also
calculated. Two approaches were used for this purpose: the first is “Halperin’s trick” and is
specific to the case of delta scatterers (cf. Sect. 3.5); the second uses analytic continuation
of the characteristic function and depends on the explicit knowledge of the invariant mea-
sure in some interval of the energy outside the spectrum. By the first of these methods we
have recovered the results of Nieuwenhuizen in the case of delta scatterers. By the second
method we have found new explicit formulae for the integrated density of states and for the
Lyapunov exponent in the cases of delta-prime and of supersymmetric scatterers.

All these analytical results were obtained when the spacing between consecutive scatter-
ers, as well as the impurity strength, have exponential distributions. Possible extensions to
the gamma distribution were also discussed.

A more complicated type of scatterer, combining the delta and the supersymmetric scat-
terers, has also been examined. We called this scatterer the “double impurity”; it is inter-
esting because every product of matrices in SL (2,R) may in principle be studied by con-
sidering a Schrödinger problem whose potential consists of double impurities. Although we
succeeded in deriving a differential equation for the invariant measure associated with a
particular distribution of such scatterers, we were unable to express its solution in terms of
known functions.

In this paper we have played down the physical aspects of the models. Apart from the
inverse localisation length and the density of states, there are other physical quantities that
bear some relation to the Riccati variable and whose statistical properties are of interest. Let
us mention three of them: the most obvious is the phase of the reflexion coefficient on the
disordered region; for a semi-infinite disordered region, its distribution is trivially related to
the invariant density of the Riccati variable [5, 22, 32]. Another quantity is the Wigner time
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delay (the derivative of the phase shift with respect to the energy); it has been considered
in the contexts of the Schrödinger [28, 40] and Dirac [39] equations. A third quantity is
the transmission coefficient (i.e. conductance) [4, 16, 37]. The study of the distributions of
the Wigner time delay and of the transmission coefficient is mathematically more challeng-
ing because it requires the analysis of some joint distributions; for this reason it has been
confined so far to limiting cases.

Some of the physical aspects arising from our results will form the basis of future work.

Appendix A: Scattering, Transfer and Boundary Matrices

We discuss in this section the relationship between the scattering matrix S, defined by (2.9),
and the boundary matrix B , defined by (2.3). Here we need not assume that the scatterer
is necessarily pointlike; the scattering matrix and the corresponding boundary matrix could
equally well describe the effect of a potential supported on an interval.

We first write the scattering matrix in terms of transmission and reflexion probability
amplitudes t , t ′ and r , r ′:

S =
(

r t ′
t r ′

)
.

Current conservation implies

∣∣aout
+

∣∣2 + ∣∣aout
−

∣∣2 = ∣∣ain
−
∣∣2 + ∣∣ain

+
∣∣2

and so forces the scattering matrix to be unitary, i.e. S ∈ U(2). The constraints on the coef-
ficients, namely

|r|2 + |t |2 = |r ′|2 + |t ′|2 = |r ′|2 + |t |2 = |r|2 + |t ′|2 = 1,

r ′/t ′ = −r/t and r/t ′ = −r ′/t,

are conveniently built into the following parametrisation, which also illustrates the factori-
sation U(2) = U(1) × SU(2):

S = ieiθ

(
eiϕ

√
1 − τ −ie−iχ√

τ

−ieiχ√
τ e−iϕ

√
1 − τ

)
. (A.1)

This representation of the scattering matrix is interesting because the four real parameters
have a clear physical interpretation: τ ∈ [0,1] is the probability of transmission through the
scatterer; θ is the global phase of the matrix, i.e.

detS = −e2iθ .

It is sometimes referred to as the “Friedel phase” since it is the phase appearing in the Krein–
Friedel sum rule relating the local density of states of the scattering region to a scattering
property. The phase ϕ is a measure of the left-right asymmetry (ϕ = 0 or π corresponds to
a scattering invariant under x → −x). Finally the phase χ is of magnetic origin, since time
reversal corresponds to transposition of the scattering matrix.
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Next, we introduce the transfer matrix T relating left and right amplitudes:

(
aout+
ain+

)
= T

(
ain−
aout−

)
where T =

(
1/t −r/t

−r/t ′ 1/t ′

)
.

This matrix is useful when considering the cumulative effect of many scatterers because
it follows a simple composition law. Again, current conservation implies that the transfer
matrix is unitary: ∣∣aout

+
∣∣2 − ∣∣ain

+
∣∣2 = ∣∣ain

−
∣∣2 − ∣∣aout

−
∣∣2

.

In other words, T ∈ U(1,1) (note that detT = t/t ′ = e2iχ ).
The boundary matrix is also a “transfer matrix” in the sense that it connects properties

of the wavefunction on both sides of the scatterer. The relation between T and B is easily
found: from

(
ψ ′(0±)

ψ(0±)

)
=

(
ik −ik
1 1

)⎛
⎝a

out
in±

a
in
out±

⎞
⎠

we deduce

B = UT U † where U = e−iπ/4

√
2k

(
ik −ik
1 1

)
.

Then, using the parametrisation (A.1), we arrive at the following alternative form of (2.3):

B = eiχ

√
τ

(
cos θ − sinϕ

√
1 − τ −k[sin θ + cosϕ

√
1 − τ ]

1
k
[sin θ − cosϕ

√
1 − τ ] cos θ + sinϕ

√
1 − τ

)
. (A.2)

In particular, this expression shows clearly that

e−iχB ∈ SL(2,R).

In one dimension, if a magnetic field is present, it may always be removed by a gauge
transformation. Furthermore, setting the magnetic phase in the exponential factor to zero
does not affect the spectrum of the Schrödinger operator. Hence there is no loss of generality
in restricting our attention to the case B ∈ SL(2,R).

We end this appendix with some examples of scatterers, expressed in terms of the para-
meters χ , τ , θ and ϕ.

Example 1 For τ = 1, ϕ = 0 and χ = 0, B is the matrix describing a rotation of angle
θ = k
. In this case, the “scattering” is equivalent to free propagation through an interval of
length 
.

Example 2 The scattering matrix for the delta impurity may be written as

S = eiθ

(
i sin θ cos θ

cos θ i sin θ

)

where

θ = − arctan
u

2k
∈ (−π/2,π/2).
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The other parameters are given by χ = 0,

ϕ =
{

0 if u < 0,

π if u > 0

and

τ =
[

1 +
(

u

2k

)2
]−1

.

Example 3 For the delta-prime scatterer, the scattering matrix S has the same form as in the
previous example, but this time with

θ = arctan
vk

2
∈ (−π/2,π/2),

χ = 0,

ϕ =
{

0 if v < 0,

π if v > 0

and

τ =
[

1 +
(

vk

2

)2]−1

.

Example 4 The supersymmetric scatterer corresponds to taking χ = θ = 0, ϕ = −π/2 and
τ = sech2 w.
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